定这是冥王星的卫星,即卡戎。
尼克斯和许德拉的发现
2005年5月15日,天文学家使用哈勃太空望远镜发现了这两颗卫星,它们在冥王星和卡戎不断变化的引力场中运行,轨道和位置会混乱地摆动。
科波若斯和斯提克斯的发现
科波若斯是2011年7月20日由哈勃望远镜的广角相机三号发现的,当时暂时被编号为p4,2013年国际天文学联合会正式确认其名称为Kerberos。斯提克斯是2012年由哈勃望远镜发现的。这两颗卫星的发现均属意外收获,是在哈勃望远镜执行其他观测任务时被发现的。
哈勃空间望远镜是1990年4月24日由美国“发现者”号航天飞机成功发射入轨的大型轨道天文台。以下是对它的具体介绍:
结构设计
- 光学系统:采用反射式设计,主镜直径2.4米,由超低膨胀玻璃制成,表面精度达到可见光波长的二十分之一。副镜用于校正图像畸变。
- 仪器舱:搭载了如广域行星相机、暗天体相机、暗天体光谱仪等多种科学仪器,可对天体进行成像和光谱观测。
- 太空平台:由洛克希德公司研制,采用多层绝缘材料制成的遮蔽罩衣和轻质铝壳,内部有石墨环氧框架固定仪器,能使望远镜在恶劣的太空环境中保持稳定的温度和指向。
工作原理
宇宙中的光线照射到主镜上,反射到副镜,再从副镜反射穿过主镜上的一个洞,被仪器接收,仪器将光线收集并转化为电信号或数字信号,记录并传输回地球,经处理后形成天体的图像和光谱数据。
观测优势
- 高分辨率:位于地球大气层之上,不受大气抖动、散射和吸收等因素的影响,能够拍摄到极其清晰和细节丰富的天体图像。
- 宽波段观测:可以观测从紫外线到可见光再到近红外线的广阔波段范围,为研究天体的物理性质和化学组成提供了丰富的信息。
科学贡献
- 宇宙学方面:通过对遥远星系中造父变星的观测,精确测定了宇宙的膨胀速度,即哈勃常数;发现了宇宙正在加速膨胀,促使了暗能量理论的提出。
- 星系演化方面:观测到了不同年龄和类型的星系,揭示了星系从原始状态到复杂结构的演化过程。
- 恒星形成方面:拍摄到了恒星形成区的详细图像,帮助科学家了解恒星的形成机制和演化过程。
- 太阳系研究方面:对太阳系内的行星、卫星、小行星和彗星等天体进行了观测,提供了它们的表面特征、大气层组成和气候等方面的重要信息。
哈勃望远镜还发现了许多其他天体,以下是一些较为着名的:
类星体
- 3c 273:位于室女座,距离地球约25亿光年,是人类历史上首个被确认的类星体。其中心有一个质量约为太阳8.86亿倍的超大质量黑洞,不断吞噬物质并释放巨大能量。
- Z229-15:位于天琴座,距离地球3.9亿光年,兼具活跃星系核、类星体和塞弗特星系的特征。
星系
- 大量遥远星系:在观测中发现了许多距离地球数十亿光年的星系,帮助科学家了解星系的形成和演化过程。
- 超级星系:一些质量和体积巨大、包含大量恒星的超级星系,对研究宇宙中星系的多样性和演化具有重要意义。
恒星及恒星系统
- 原行星盘:在猎户座等恒星形成区观测到许多原行星盘,即由气体和尘埃组成的围绕年轻恒星的盘状结构,为行星的形成提供了物质基础。
- 系外行星:虽然大部分系外行星是由地面望远镜发现的,但哈勃望远镜在研究外星世界方面也有重要贡献,如首次确定了一颗系外行星的大气成分,并对北落师门b进行了可见光成像。
其他天体
- 伽马射线暴源星系:发现伽马射线暴通常发生在正在积极形成恒星且金属含量低的星系中,为研究伽马射线暴的起源提供了线索。
- 苏梅克-列维9号彗星:观测到了这颗彗星与木星的壮观撞击过程,为研究天体撞击和木星的大气层提供了宝贵资料。
哈勃望远镜观测系外行星主要有以下几种方法:
直接成像法
- 原理:直接对行星拍照,以获得其光度、温度、大气、轨道等信息。
- 操作难