,讲述比例分配问题;第四章少广,讲述已知图形面积和体积计算边长和径长以及开平方、开立方的方法;第五章商功,讲述土石工程的分配方法及各种立体的体积计算方法;第六章均输,讲述用衰分术等比例方法解决赋税和劳役问题;第七章盈不足,讲述通过两次假设解决盈亏问题;第八章方程,讲述一次线性方程组及利用直除法、正负数的加减乘除法解决方程组等内容;第九章勾股,讲述利用勾股定理解决实际问题。
主要思想:具有数形结合思想,在解决应用问题时将算数方法和绘制图形相结合;重视实际,核心是数学适用于社会生活生产的实用性;体现了统计思想,包括统计分组、线性回归分析、随机抽样和数量关系等。
版本情况:版本众多且较为冗杂,现代以郭书春的汇校本较为流行、清晰。
价值意义:史料价值方面,保留了大量两汉社会生活史料,为研究当时社会经济发展提供参考;教育价值方面,对今天中小学的数学教育在教学题目选择、教学精神及培养学生能力素养等方面具有重要参考和借鉴意义。
《九章算术注》是南北朝刘徽创作的数学着作,以下是相关介绍:
作者简介:
刘徽约公元225年—295年,汉族,山东邹平人,是魏晋期间伟大的数学家,中国古典数学理论的奠基者之一。
创作背景:
刘徽自幼学习《九章算术》,在长期研究过程中,他发现原书存在一些不足和有待完善之处,于是对其进行了详细注释,
主要内容:
数系理论:用数的同类与异类阐述通分、约分等运算法则,明确给出正数、负数概念,探讨数系基本元素问题,完善正负数加减方法,还创造了用十进分数无限逼近无理根的方法。
筹式演算理论:给率明确定义,以遍乘、通约、齐同等三种基本运算为基础,建立数与式运算的统一理论基础,并用“率”定义中国古代数学中的“方程”。
勾股理论:逐一论证勾股定理与解勾股形的计算原理,建立相似勾股形理论,发展勾股测量术,形成中国特色的相似理论。
面积与体积理论:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出刘徽原理,解决多种几何形、几何体的面积、体积计算问题。
重要创见:
割圆术与圆周率:在《九章算术·圆田术》注中,用割圆术证明圆面积精确公式,并算出圆内接正192边形的面积,得到π=3.14,又算到3072边形的面积,得出π=3.1416,即“徽率”。
刘徽原理:在《九章算术·阳马术》注中,用无限分割方法解决锥体体积时,提出多面体体积计算的刘徽原理。
牟合方盖:在《九章算术·开立圆术》注中,指出球体积公式的不精确性,并引入“牟合方盖”几何模型。
方程新术:在《九章算术·方程术》注中,提出解线性方程组的新方法,运用比率算法思想。
重差术:在自撰的《海岛算经》中,提出重差术,采用重表、连索和累矩等测高测远方法,并使重差术由两次测望发展为“三望”“四望”。
作品影响:
《九章算术注》中蕴含的逻辑思想、重验思想、极限思想等极其深邃,使以《九章算术》为代表的中国传统数学发生根本性变化并上升到新的阶段,刘徽也堪称世界数学泰斗。
割圆术的基本原理是用圆内接正多边形的面积或周长去无限逼近圆的面积或周长,进而求得圆周率的近似值。具体如下:
从圆内接正六边形开始:由于圆的内接正六边形的边长等于半径,其周长与直径之比为“周三径一”。在此基础上,依次等分圆周,得到圆内接正十二边形、二十四边形等,边数不断加倍。
利用勾股定理计算边长:通过勾股定理,根据已知的圆内接正多边形的边长和半径等数据,计算出边数增加后的正多边形的边长,从而得到其周长和面积 ,这些数值会随着边数的增加越来越接近圆的周长和面积。
极限思想的应用:刘徽指出,当分割越来越细,达到“不可再割”的极限程度时,内接正多边形与圆相合,内接正多边形与圆面积之差递减为零,即通过不断增加边数,使正多边形无限逼近圆,以实现用有限的计算来逼近无穷的精确值。
“重差”是中国古代数学中的一种测量方法。
它主要用于测量远方物体的高度、深度、宽度等。通过两次测量的差值来计